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INTRODUCTION 

The online supplementary materials complement the main text with more detailed analyses and discussion on certain topics. The 

materials are arranged in a sequence similar to that in the main text for easy reference. 

One of the earliest mathematical models of cholera dynamics was probably that of Capasso and Paveri-Fontana [1]. It was a model 

of 2 ordinary differential equations, fit to data of the cholera outbreak in Bari, Italy in 1973. Codeço explicitly acknowledged that 

her model [2] was the extension of ref. [1]. 

Another early model of cholera transmission was that of Cvjetanovic, Grab and Uemura, as described in Chapter 5 (pages 65-79) of 

their modeling “textbook”,  Dynamics of acute bacterial diseases. Epidemiological models and their application in public health, which was a 

supplement to the Bulletin of the World Health Organization in 1978 [3, 4]. Cvjetanovic et al.’s model consisted of 11 population 

compartments (including two for deaths from cholera or other causes, which were redundant). It did not consist of a variable for 

the bacterial concentration in water source. The route of cholera transmission modeled therein was “human-to-human”. 

Cvjetanovic et al. studied the option of using vaccination, sanitation and chemoprophylaxis alone or in different combination (two 

or three interventions) (assumptions see Table S1). 

Table S1 Assumptions made for interventions modeled in the model by Cvjetanovic et al. [3, 4]. 

Interventions Assumptions 

Vaccine Vaccination was carried out 21 days after the seasonal rise in the force of infection and that 75% of the 
population was immunized 

Sanitation A 10-year sanitation program to construct privies would gradually reduce the force of infection by 50% in 
10 years among the population provided with privies. 

Chemoprophylaxis 10 close contacts per index case were treated, of whom 5 were carriers. 

 

THE BASIC MODEL 

Following the example of Grad et al. [5], I adopt Codeço’s model [2] as the basis of our discussion, with some minor modifications: 

dS/dt = – λS + μbN –μdS 

dI/dt =  λS – γI – (μc+μd)I 

dR/dt = γI – μdR 

dB/dt = ξI – δB 

where λ = β[B/(B+κ)] and N = S + I + R 

Here, S, I and R refer to susceptible, infectious and recovered populations respectively. N is the total population. B refers to the 

concentration of V. cholerae in the water reservoir or supply. The parameters are explained as in Table S2: 

TABLE S2 PARAMETERS OF THE BASIC MODEL 

Parameter Meaning 

λ Force of infection 

β “Contact rate” between the susceptible population with contaminated water 

κ Concentration of V. cholerae in the water reservoir that will make 50% of the susceptible population ill. 

γ Recovery rate of infected people (1/γ = duration of infectiousness) 

ξ Rate at which infectious people contribute V. cholerae to the water reservoir. 
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δ Rate at which V. cholerae are removed from the water reservoir. 

μb Birth rate 

μc Death rate due to cholera 

μd Death rate unrelated to cholera 

 

THE FORCE OF INFECTION 

The force of infection in our basic model is the per capita rate of infection experienced by susceptible individuals. It is defined as λ 

= β[B/(B+κ)], with three parameters or variables: 

1. β: the “contact rate” between the susceptible population with contaminated water,  

2. B: the level of contamination of the water supply (V. cholerae concentration), and  

3. κ: the concentration of V. cholerae at which the infection rate is 50% of the maximum infection rate, that is β.  

When the concentration of bacteria in the water reservoir reaches the value of κ, the force of infection equals half the “contact” rate 

of susceptible people with contaminated water (When B = κ, λ = ½ β). When the bacterial concentration becomes very high, the 

force of infection equals the “contact” rate of susceptible people with contaminated water (When B  ∞, λ = β) (See Figure S1). Its 

underlying assumption is a saturation effect of the bacteria concentration in the water reservoir. This is known as Monod equation 

in microbiology [6] and is similar to the Michaelis-Menten enzyme kinetics of single substrate [7]. It implies that if the concentration 

of V. cholerae in the water reservoir is low, its reduction by half will lead to a larger reduction in the force of infection than if it is 

high. 

As it will be discussed in a later section of the paper, the formula for the force of infection will change if we include the so-called 

“human-to-human” transmission in the model. 

FIGURE S1 THE ASSUMED RELATIONSHIP BETWEEN BACTERIAL CONCENTRATION IN WATER (B) AND 

THE FORCE OF INFECTION (λ). IF B  ∞, λ = β. If B = κ, λ = ½ β . 

 

 

SUMMARY OF SELECTED MODELS 

Table S3 provides a summary of selected studies on their model structure, interventions studied, their predecessor models from 

which their models were derived and the main points of their papers. 
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TABLE S3 SUMMARY OF SELECTED CHOLERA TRANSMISSION DYNAMICS ORDINARY DIFFERENTIAL EQUATION MODELS 

Paper Location Epidemic / 
Endemic 

Model structure Interventions studied Predecessor 
model ^ 

Main point(s) of the paper; comments. 

   Human-to-
human 
transmission 

Hyper-
infectious 
cholera # 

Asymptomatic 
infected 
compartment 

Geo-spatial 
simulation 

Treatment OCV WASH   

Andrews & 
Basu [8] 

Haiti Epidemic No Yes Yes No Antibiotics  Yes Clean water Hartley et al. [9]; 
Miller Neilan et 
al. [10] 

Compare effect of interventions. Model Port-au-Prince 
and 10 departments separately. 

Bertuzzo et al. 
2011 [11] 

Haiti Epidemic No No No Yes No Yes “Sanitation”
§ 

Bertuzzo et al. 
2008 

Compare effect of interventions. Spatial model of 
Haiti’s >500 local communities. 

Codeço et al.[2] 
 

n/a Endemic and 
Epidemic 

No No No No No No No Capasso and 
Paveri-Fontana 
[1]  

Demonstrate the role of aquatic reservoir; model 
forced seasonal oscillation of (a) contact rate or (b) per 
capita contamination rate. The basis for all subsequent 
models 

Date et al. [12] 
and Abrams et 
al. [13] 

Haiti Epidemic No No No Yes No Yes No Hartley et al.[9]? The impact predicted by this model is less than the 
other models. The model was buried in Date et al.’s 
Technical Appendix 2. 

Hartley et al. [9] n/a Epidemic No Yes No No No No No Codeço et al.[2] Demonstrate the importance of hyperinfectivity of V. 
cholerae and therefore, human-to-human transmission in 
cholera transmission dynamics 

King et al. [14] Bengal* Epidemic Yes No Yes No No No No Codeço et al.[2] Stochastic model. Compare 4 models: 1. Basic model 
with waning immunity; 2. ‘Inapparent’ infection 
(infected but not infectious and become immune via 
infection); 3. Seasonality in the environmental 
reservoir; 4. Environmental-phage hypothesis. 
‘Inapparent’ infection is important 

Miller Neilan et 
al. [10] 

Bangla-
desh and 
India** 

Endemic No Yes Yes No ORT & 
Antibiotics 

Yes “Sanitation”
§ 

King et al. [14] Different optimal (most cost-effective) control 
measures for different locations 

Mukandavire et 
al. [15] 

Zimbabwe Outbreaks in 
endemic area 

Yes No No Model each 
province 
separately 

No Yes No Hartley et al. [9] 
(similar to Tien 
and Earn [16]) 

Estimated R0 for cholera across different provinces 

Mukandavire et 
al. [17] 

Haiti Epidemic Yes No No Model each 
'department' 
separately 

No Yes No Mukandavire et 
al. [15] 

Estimated R0 for cholera across different 'departments' 

Mwasa & 
Tchuenche [18] 

n/a Epidemic No No No No ORT Yes Education, 
Quarantine 

 Compare different interventions. Include different 
compartments for vaccinated, quarantined and treated 
individuals, as well as those who received health 
education regarding cholera prevention. 

Rinaldo et al. 
[19] 

Haiti Epidemic No No No Yes No No No Bertuzzo et al. 
2011 [11] 

Rainfall-driven seasonal variation; further development 
of Bertuzzo et al. [11] 

Tien & Earn† 
[16] 

n/a Endemic Yes No No No No No No Codeço et al.[2] Prove that the endemic equilibrium for the model with 
the ‘bacteria in water’ compartment is mathematically 
globally stable. 

Tien et al.[20] London, 
UK‡ 

Endemic Yes No No No n/a n/a n/a Tien and Earn 
[16] 

Herald wave as a result of a new strain; Seasonality 

Tuite et al.[21] Haiti Epidemic No No No Yes No Yes Clean water Tien and Earn 
[16] 

Spatial model of Haiti’s 10 departments; compare 
OCV with clean water 

# It means that there is a separate compartment (and equation) for hyperinfective bacteria. ^Predecessor model is the model based on which the current model under discussion is developed. § “Sanitation” in [11] actually meant 

decreasing the probability of ingesting contaminated water or food (i.e. reducing β) via provision of “targeted clean water supply (through water purification systems or filters)” and health education on “hygiene and handling of water 

and food”. This also applied to [10]. *Historic data: British East Indian province of Bengal, 1891 – 1940. **Bogra, Bangladesh and Calcutta, India. †Tien & Earn (2010) was a general model for waterborne pathogen that applies to 

cholera. ‡19th century historic data. n/a: not applicable. OCV: Oral cholera vaccine. ORT: Oral rehydration treatment 
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MODEL MISSPECIFICATION 

In the main text, we have mentioned the challenge of model mis-specification (what Grad et al. referred as “model mis-

specification” in their paper [5]), using the example of bacterial concentration vis-à-vis infectious dose. It has been pointed out 

(by an anonymous reviewer) that there could be a way of conversation between the two: As long as we know the size of the 

water reservoir and the amount of water consumed per day from that reservoir, we can estimate the infection rate (i.e. the rate 

of acquiring an infectious dose). While we agree that it is plausible in theory, it is very difficult in practice to estimate the size 

of the reservoir. More often than not, the reservoir is not well-defined. People may obtain their drinking water from multiple 

sources. Routine epidemiological surveys usually do not generate such data. 

PARAMETER UNCERTAINTY 

To complement my discussion on parameter uncertainty in the main text, we discuss some of the sources for the values of 

two parameters: duration of cholera infection and cholera life span in water reservoir. We also summarize the values of the 

key parameters in selected models in Table S5. 

DURATION OF CHOLERA INFECTION 

A number of modeling papers, for example, ref. [2, 8, 9, 13], fixed the duration of cholera infection to 5 days. We selected two 

and discussed their data sources here. 

Hartley et al. [9] cited two references: 

a) Tudor & Strato [22] (p. 313), actually referred to the International Health Regulations (1969, amended 1973) Article 

62, “For the purposes of these Regulations the incubation period of cholera is five days”. 

b) Hendrix’s review on cholera [23] (p. 1169): “In a study of 12 consecutive cholera patients in Dacca, Pakistan, in 1964, 

Lindenbaum and his associates found that the average duration of diarrhea was 4.7 days (range 2.7 to 6.3) and that 

the stool volume passed during hospitalization averaged 30.8 l. (range 5.2 to 69.1).” The data cited in Hendrix came 

from Table V, on page 1082 of Lindenbaum et al. [24]. 

The incubation period and the disease period are actually two different concepts. However, in most cholera models, 

incubation period is not explicitly modeled. Individuals are assumed to become infectious immediately once they are infected. 

Andrews and Basu [8] cited two references: 

a) Rahaman et al. [25] was a double-blinded clinical trial of doxycycline and tetracycline on cholera patients. In this trial, 

all participants, including those receiving the placebo, recovered within 3 to 4 days. 

b) Levine et al. [26] was a cholera vaccine trial. Volunteers were observed for 96 hours (challenge studies) or 120 hours 

(vaccination studies) before receiving a course of tetracycline for 5 days. 

These two references did not necessary support a duration of cholera infection of 5 days as used in Andrews and Basu [8]. 

Nonetheless, the value of 5 days for the duration of cholera infection is consistent with the data from Lindembaum et al. [24]. 
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CHOLERA LIFE SPAN IN WATER RESERVOIR 

Complementary to the analysis of Grad et al. [5], we review here the sources for the values for cholera life span in water 

reservoir used in some recent models: 

(a) Abrams et al. [13], Andrews and Basu [8], and Chao et al. [27] all parameterized their model with a 30-day cholera life 

span in water reservoir. They all cited Hartley et al. [9] as their source. In turn, Hartley et al. cited Kaper et al. [28] 

and the International Health Regulations (1969, amended 1973), on p. 313 in Tudor and Strati [22], but we could not 

identify the source in the latter reference. 

(b) Bertuzzo et al. [11] cited one of their earlier papers [29] for their value of 4.39 (=1/0.228) days. It was a calibrated 

value in ref. [29]. 

(c) Tuite et al. [21] wrote that they derived their plausible range of 2.743 to 5.949 weeks – that is, 19.20 to 41.64 days – 

from “studies of bacterial survival in sediments”, citing Hood et al. [30], which was a paper about isolation of vibrios 

from oysters. We are not very sure if ref. [30] was the correct reference for the purpose of Tuite et al.. The mean life 

span of vibrios was a parameter fitted to the Haitian cholera hospitalization data in Tuite et al. Their best fit value 

was 5.910 weeks (41.37 days). 

Actually, data of cholera life span in water reservoir had been published as far as in the 1960s. Thanks to the suggestions of an 

anonymous reviewer, I hereby review some of these data for the convenience of future modeling endeavors. (Two of the 

sources were cited and mentioned in the discussion of Grad et al. [5].) 

In 7 samples of shallow well water of pH 7.6-8.8, Felsenfeld [31] observed that Classic vibrios (13 non-haemolytic Ogawa and 

5 non-haemolytic Inaba strains) survived for 7.5 ±  1.9 days, while El Tor Ogawa vibrios survived for 19.3 ±  5.1 days.  

In an experiment in which water samples were inoculated with El Tor vibrios at a concentration of 1 x 106 vibrios per ml, 

Pesigan et al. [32] (same data as in Pesigan [33]) found that vibrios survived in deep well-water sample from the Philippines for 

13 days at room temperature (30˚C - 32 ˚C) and for 4 days if exposed to sunlight (daily measurement). The same vibrios were 

found surviving for 10 to 13 days in sea water sample at 30˚C - 32 ˚C and for 10 to 11 days if exposed to sunlight (daily 

measurement). In chlorinated tap water, vibrios survived for only one hour whether exposed to sunlight or not (hourly 

measurement) [32]. 

Similarly, Pandit et al. [34] measured El Tor vibrio survival in water samples from India: (a) well water from Jatauli village, 

Gurgagon district, Punjab, (b) well water from Bhopura village, Meerut district, Uttar Pradesh, and (c) tap water from the 

municipal water supply of Delhi (kept for 48 hours to remove chlorine). The water samples were inoculated with vibrios at a 

concentration of 1000 vibrios per ml. (mean, 992, standard derivation 15.2, range, 971-1020). It was found that a temperature 

of 21ºC, by day 8, vibrio concentration drops to 100 to 150 vibrios per ml. Vibrios survived for a period of (a) 18 days to (b) 

51 days in well water, and (c) 12 hours in chlorine-removed tap water (measurements were made 4 times at intervals of 7 to 10 

days). In the well water sample from (b) Bhopura village, vibrio concentration drops from 40 (day 19) to 20 (day 26) to 10 (day 

39) per ml [34].  

In another experiment, Pandit et al. [34] measured vibrio survival at an hourly basis, and observed the initial growth and 

subsequent decay in Bhopura well water as in Table S4. 

TABLE S4 VIABILITY OF EL TOR VIBRIOS (STRAIN 205) IN BHOPURA WELL WATER (ADAPTED FROM THE 

FIGURE IN PANDIT ET AL. [34]) 

Hour 0 24 48 72 96 120 144 168 

Number of vibrios 
per ml of water* 

1000 4000 ~2000 ~750 ~500 ~300 ~200 ~200 

* I estimated the numbers from the figure in the paper, except for 0 hour and 24 hours that were clearly stated in the text of 

ref. [34]. 
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Concurring with Grad et al. [5], the uncertainty associated with the cholera life span, and therefore the bacterial decay rate, in 

the water reservoir, is a source of uncertainty for cholera modeling outputs. 

COMPARISON OF VALUES FOR KEY PARAMETERS ACROSS SELECTED MODELS 

Furthermore, we expanded Table 1 and selected a few models that focus on the Haitian epidemic, and compared some of the 

parameters they used with the Codeço [2] (all converted into our notations) in Table S5. Please note that Codeço chose her 

parameters to illustrate her three hypothetical communities. She did perform sensitivity analyses on her parameters (See Table 3 

of her paper). 
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TABLE S5 COMPARISON OF VALUES FOR KEY PARAMETERS ACROSS SELECTED MODELS 

Sym

-bol 

Parameters Range 

found in 

literature, 

taken from 

ref. [5] 

Codeço [2] Abrams et al., 

Dec 15, 2010  

[13](also [12]) 

Abrams 

et al., Jan 

28, 2011 

[13] 

Abrams 

et al., 

Mar 4, 

2011 [13] 

Andrews and 

Basu [8] 

Bertuzzo et 

al. [11] 

Chao et al. [27] Tuite et al. [21] 

β Rate of “contact” with 

reservoir water (days-

1) 

10-5 to 1 1 (chosen for 

illustrating 

epidemic and 

endemic cases); 

0.5 for cholera-

free population. 

0.07 (Fitted to 

data) 

0.0301 

(Fitted to 

data) 

0.0255 

(Fitted to 

data) 

Fitted to data 1.0. Same as 

[2] 

 

1. Fixed. Human-to-human transmission, 

Plausible range: 0.01 to 0.1 (best fit, 

0.1); waterborne transmission, 

Plausible range: 0.789 to 0.945 

(best fit, 0.944) 

1/γ Duration of cholera 

infection (days) 

2.9 to 14 1/0.2 = 5 5 (cited [9]  [29] ) 5 5 5 (citing [25, 26]) 1/0.2 = 5. 

Same as [2]  

Latency period = 1 to 

5 days; Infectious 

period = 7 to 14 days 

Plausible range: 2.376 to 3.013 

(best fit, 2.913) 

1/δ Cholera life span in 

water reservoir (days, 

except otherwise 

stated) 

3 to 41 1/0.33 ≈ 3 30 [12]; 1/0.7 [13] 1/0.033 = 

30 (citing 

[9, 16]) 

1/0.033 = 

30 

30, citing [9] 1/0.228, citing 

[29]  

30, citing [9] Plausible range: 2.743 to 5.949 

weeks (best fit, 5.910) citing [30] 

ξ Rate of water 

contamination by 

humans, i.e. rate of 

increase in V. cholerae 

concentration in the 

water reservoir (cells * 

mL-1 * person-1 * day-

1) 

0.01 to 10 10    Symptomatic 

patients: 1.3 * 

1011 cells person-1 

day-1; 

Asymptomatic 

patients: 1.3 * 108 

cells person-1 day-

1 ‡ 

† 1 n/a (they have rescaled their 

equation and therefore eliminate 

this variable, Cf. [16]) 

κ Concentration of 

cholera that yields 

50% chance of 

infection (cells / mL) 

105 to 106 106 Population in 

department i / 

ln(population 

density in 

department i at 

the start of the 

outbreak) 

Same as 

Dec 15 

Same as 

Dec 15 

Normal bacteria: 

105  

Hyper-infectious 

bacteria:  

105 /50 = 2000 

† 70 (source unknown) This parameter does not exist in 

this model. 

Notes. †In Bertuzzo et al. (2011) [11], they normalized their equation with respect to κ and define a new parameter θ = p/cκ, given c = W/N (a constant, using our notation, W = total volume of water; N = 

total number of people). As our parameter ξ = p/W = p/cN, therefore, p/c = ξN, so θ = ξN/κ. And given that in their model, R0 = β * θ /[δ * (γ + μc + μd)], using our own notations, and given the values: β 

= 1 day-1; δ = 0.22 day-1; γ = 0.20 day-1; μc = 0.004 day-1; μd = 0.000046 day-1, I calculate that θ = 0.088882 day-1. ‡ The rates of bacterial shedding had to be divided by the size of water reservoir, W = 15L * 

population * 365.  



9 
 

VACCINATION 

As discussed in the main text, one of the ways to model vaccination is to model the successfully vaccinated individuals in a 

separate compartment as in Figures 3 and 4. Mathematically, an equation can be added to the system (adapted from Andrews 

and Basu [8]): 

dV/dt = τv(t) – εV(t) – μV(t) 

where,  

v(t): rate of individuals vaccinated per unit time; 
τ: percentage of vaccinated individuals that are successfully immunized (measure of direct effect of vaccines); 
1/ε: average duration for which the successfully vaccinated individuals remain immune (e.g. 3 years); and 
μ: death rate. 
 
Here the successful immunization rate is calculated by multiplying the rate of individuals vaccinated per unit time (v(t)) with 

the percentage of vaccinated individuals that are successfully immunized (τ). The rate of individuals vaccinated can be varied 

across time as intervention program expands. Immunity will wane and successfully immunized people will become susceptible 

again at a rate of ε. As an anonymous reviewer pointed out, the direct protection of a vaccine is jointly determined by τ and ε. 

For example, Shanchol confers 66% direct protection for at least 3 years. This can happen if only 66% of the vaccinated are 

successfully immunized and the immunity does not wane for 3 years. Alternatively, everyone that was vaccinated might be 

successfully immunized but the immunity wanes so that over a period of 3 years, the cholera incidence among the vaccinated 

is 66% lower than that of the unvaccinated. The reality may be somewhere in between. 

There are published models that studied the potential impact of oral cholera vaccines (OCV) on the Haitian epidemic. Here 

below we discuss the vaccination strategies modeled by some of these models and their choices of values of vaccine 

effectiveness.  
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VACCINATION STRATEGY  

Firstly, the vaccination strategies modeled by five papers on the Haitian epidemic, published in the first half of 2011, and their 

implication for implementation are compared in Table S6. Some of the scenarios discussed would benefit from greater 

consideration of implementation and logistics to develop more realistic strategies that could actually be implemented in Haiti. 

TABLE S6 VACCINATION STRATEGIES MODELED FOR THE HAITIAN EPIDEMIC IN SELECTED 

PAPERS 

 Vaccination strategies modeled Implication for implementation 

Andrews and 

Basu [8] 

10% of the Haitian population received vaccination (about 2 million 

doses = 1 million individuals vaccinated) over 1 month, beginning on 

March 1, 2011. 

Implied vaccinating around 33,000 individuals per day 

Bertuzzo et al. 

[11] 

(a) 300,000 doses (=150,000 people vaccinated) in Port-au-Prince 

within one week, starting on January 1, 2011; 

(b) 600,000 doses (=300,000 people vaccinated), distributed uniformly 

across Haiti within one month, starting on November 1, 2010. 

Strategy (a) and (b) implied over 20,000 and 10,000 individuals 

to be vaccinated per day. 

Chao et al. [27] (a) the hypothetical pre-vaccination, before the outbreak, in Haiti;  

For reactive vaccinations, vaccination began 21 days after the 

beginning of the outbreak. 50,000 individuals were vaccinated per day 

thereafter: 

(b) reactive mass vaccination;  

(c) reactive ring vaccination; and  

(d) reactive high-exposure vaccination (all regions along any major 

river in Haiti). 

According to their results, among the three reactive strategies, 

strategy (d) is the most efficient. However, this strategy would 

be challenging to implement.  

To vaccinate 50,000 individuals per day, it is the most 

optimistic scenario among all 4 papers discussed in this table. 

Date et al. [12] Use of 2-dose Dukarol for all eligible people (no prioritization) 

Vaccination rate of 10,000 doses per day.  

80% of those who received the first dose, receive the second dose 2 

weeks after the first dose. 

Vaccination rate of 10,000 doses per day (as an input to the 

model). 

 

Tuite et al. [21] Distributing 1 million doses (vaccinating 500,000 individuals): 

(a) equal allocation to Haiti’s 10 departments; 
(b) allocation in proportion to the population size; 
(c) optimized allocation (maximum reduction in total number 

of cases). 
Comparing the results, if vaccination was completed from days 1, 30, 

60, 90, 120, and 150 from 21 October 2010. 

The key result was that the earlier the vaccination campaign 

was completed, the more cases were averted. Optimization 

would begin to make a difference when vaccination started 

late. 

The vaccination schedule under consideration imply 

vaccinating per day: 

Completion on Day 30: 16667 

Completion on Day 60: 8333 

Completion on Day 90: 5556 

Completion on Day 120: 4167 

Completion on Day 150: 3333 

VACCINE EFFECTIVENESS 

Oral cholera vaccine effectiveness empirical data are listed in Table S7. 

TABLE S7 EMPIRICAL DATA OF ORAL CHOLERA VACCINE EFFECTIVENESS AGAINST SYMPTOMATIC 

CHOLERA WITH CONFIRMED INFECTION. 

Oral Cholera 
Vaccine 

Vaccine effectiveness against symptomatic cholera with confirmed 

infection, VESP (Direct effect) 

Location of the vaccine trial References 

Dukarol 55% in 1 year  Matlab, Bangladesh Ali et al. [35] 

Dukarol 79% in 15 months Zanzibar, Tanzania Khatib et al. [36] 

Shanchol 66% in 3 years  Kolkata, India Sur et al. [37] 

Shanchol 65% in 5 years Kolkata, India Bhattacharya et al. 

[38] 
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Using the symbols as in Chao et al.[27], we summarize the vaccine effectiveness measures used in the five published models 

on the Haitian epidemic in Table S8. 

TABLE S8 VACCINE EFFECTIVENESS MEASURES IN FIVE SELECTED MODELS ON THE HAITIAN EPIDEMIC 

 Vaccine 

Effectiveness to 

prevent infection 

from exposure 

(VES) 

Vaccine Effectiveness to 

prevent infected 

individuals from being 

symptomatic (VEP) 

Vaccine Effectiveness 

in reducing 

infectiousness of 

infectious individuals 

(VEI) 

Mean duration of 

immunity 

Notes 

Andrews 

and Basu [8] 

67% [39, 40] (2-dose) 0% 0% 2 years [39, 40]; 

(sensitivity analysis: 

0.5 to 5 years) 

“All or none”: either 100% 

immune or susceptible 

Bertuzzo et 

al. [11] 

Assumed to be 100% 

* (2-dose) 

0%  0%  Longer than the 

model’s timeframe 

(6 months)  

Judgment based on their 

model structure. 

Chao et al. 

[27] 

Assumed to be 0, 

citing [41] † 

64%, citing [41] (2-dose) 50%, citing [42] (2-dose) Longer than the 

model’s timeframe 

(6 months) 

Vaccine effectiveness rises 

from 0 to 50% of its full value 

for the first 7 days (mimic first 

dose), and then from 50% to 

100% from day 7 to day 21 

(mimic second dose). ‡ 

Date et al. 

[12] 

50% (1-dose) at 2 wk; 

85% (2-dose) from 

8.5d to 6mo; ~62% 

at 1yr; 58% at 2yr; 

18% at 3yr 

0% 0% - Immunity wanes according to 

an exponential decay 

regression curve fit. 

Tuite et al. 

[21] 

100% (2-dose) 0% 0% Longer than the 

model’s timeframe 

(4 months) 

There is a probability of 

vaccination within a 

department. But once an 

individual is vaccinated 

(assumed two doses), he is 

immune. § 

*Unless one get infected before they turn immune. †So that the vaccine effectiveness against symptomatic cholera with confirmed infection, VESP, = 1 – (1 – 

VES) * (1 – VEP) = 64% [41]. ‡There is no evidence that people vaccinated with one dose will have any protection. We suggest future models assume no 

immunity until the time when the second dose is supposed to be administered. § While Tuite et al. mentioned a “50% effective vaccine”, citing the Cochrane 

review for injected cholera vaccines [43], they do not take the less-than-perfect vaccine effectiveness into account.  

Three out of the 5 papers under discussion use a more reasonable vaccine effectiveness estimate. Chao et al. [27] is the most 

sophisticated one, separating the VE on susceptibility-becoming symptomatic and the VE on reducing infectiousness. We 

have to emphasize the point that to assume the direct VE as 100% (as in ref. [11, 21]) will greatly over-estimate the impact of 

vaccination. 

Bertuzzo et al. [11] created an extra variable / compartment for susceptible individuals who have received two doses of OCV 

but have not yet developed immunity and therefore are still susceptible to infection. Therefore, they created two input 

parameters: vaccination rate (number of vaccine doses administered per day), which was a logistical parameter, and a rate of 

vaccinated individuals becoming immune. While they acknowledged that “full immunity requires 7-10 days after the second 

dose to build up”, they used an estimation of a rate of 0.5 day-1 for those individuals who had received two doses of vaccine to 

become immune. Perhaps 1/7 to 1/10 would be a better input. Given the very short period of time an individual stays in that 

compartment, its impact may not be significant. More importantly, based on their model structure, we can tell that they 

assume nearly everyone who is vaccinated will turn immune from infection eventually, except those who are vaccinated, and 

then infected, before they turn immune. We know that cholera vaccine effectiveness is less than 100%. This may not be a 

correct assumption. This may be compensated mathematically by the fact that they allow vaccinated individuals to remain 

susceptible for a while (a mean of 2 days).  
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WATER, SANITATION AND HYGIENE 

Water, sanitation and hygiene can be represented in the basic model as follows: 

dB/dt = (1-san)*ξ*I – (1+sou)*δ*B 

λ = (1-h)*β*(1-p)*B/[(1-p)*B+κ] 

where, 

san: sanitation interventions and health promotion of their utilization and hand hygiene 

sou: treatment of water at source (e.g. chlorination of piped water) 

p: point-of-use water purification (via boiling, chlorination or filters) 

h: using alternative source of drinking water 

However, one potential critique of this proposal is that we usually do not measure the rate of bacterial removal from water. 

For example, we may measure the compliance of point-of-use chlorination water purification by measuring the chlorine 

residual in the drinking water. Those data are usually given in binary form (below or above a threshold that is considered “safe” 

water). 

ASYMPTOMATIC INFECTIONS 

Bertuzzo et al. [11] handled the issue of underreporting by assuming that only 5% of cholera cases reported to any healthcare 

facilities. This was estimated by assuming that 25% of infected individuals were symptomatic, among which 20% developed 

acute diarrhea and required medical attention. They included the underreporting scaling factor in their uncertainty analysis. 

(See Auxiliary materials of ref. [11]). 

In order to explain the rapid reduction from an estimated R0 of 2.78 or 2.90 at the beginning of the outbreak to an estimated 

effective reproduction number (Re) of 0.5 after three months, Tuite et al. [21] concluded that it was the result of the public 

health response in the early phase of the epidemic. Rinaldo et al. [44] criticized Tuite et al. for not including asymptomatic 

infections in their model and therefore over-estimated the impact of the interventions (a 6-fold decrease in Re). Instead, they 

proposed an alternative explanation by taking asymptomatic infections (and subsequent depletion of the susceptible 

population) into account. Tuite et al. countered by stating that Rinaldo et al. confused the two distinct concepts of R0 and Re 

and that the observed surge in cholera incidence in May 2011 was a proof that the susceptible population has not yet been 

depleted. (Rinaldo et al. argued that their explanation “does not require reproduction numbers to decrease with time”[44]; 

however, Tuite et al. did confuse the two concepts themselves when they wrote “a decrease in R0 by an average of 1.8% per 

day” in their original paper [21].) Tuite et al. could have included a scaling factor to take into account the underreporting of 

cases (asymptomatic cases and those symptomatic case who were unable to reach healthcare facilities to be “reported”) as they  

fit their modeling output to observed data. But this would probably give them an even higher R0. But more importantly, the 

size of the reduction in effective reproduction number might not be as big as Tuite et al. originally reported[21], and this 

would make the estimates closer towards their estimated effect of interventions. Likewise, while there must have been a 

reasonable size of population who had asymptomatic infection and became immune to cholera, herd immunity through 

infection would be unlikely to be the sole explanation for the reduction of the effective reproduction number. Apparently, the 

provision of clean water and prompt treatment of symptomatic cases greatly reduced cholera incidence in some camps of 

displaced populations. Rinaldo et al. [44] might have overstated the impact of asymptomatic infection (the compartment of 

susceptible was “depleted”). Apparently, the surge in incidence in mid-2011 was recognized by a later paper of theirs [19].  

In summary, underreporting of cases, including asymptomatic cases, should be taken into account when fitting modeling 

outputs to observed data (even if the model does not have a distinct compartment for asymptomatic cases). Nonetheless, the 
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reduction in effective reproduction number during the first three months of the epidemic in Haiti cannot be solely explained 

by the depletion of susceptible through infection. 

HYPERINFECTIOUS BACTERIA AND “HUMAN-TO-HUMAN” 

TRANSMISSION 

Hartley et al. [9] was the first to introduce hyperinfectious bacteria into a cholera model. They introduced a variable for 

hyperinfectious V. cholerae (BH) with this equation: 

dBH/dt = ξI – χBH 

where χ is the rate that BH lose their hyperinfectivity and become normal bacteria.  

The force of infection is formulated as such [9]:  

λ = βw[BL/(BL+κ)] + βh[BH/(BH+κ)] 

However, the hyperinfectious state is very brief (5 to 24 hours) while the dynamics of infection and recovery is in a scale of 

days. As Pascual et al. [45] explained, the number of infectious individuals (I) will essentially be a ‘constant’ to BH within their 

short ‘lifespan’. They will be in a quasi-equilibrium where we can track BH with I. Therefore, instead of having a separate 

variable, BH, we can model the impact of hyperinfectious bacteria as if it is “human-to-human” transmission, by adding a 

transmission term to the composition of the force of infection, e.g.: 

λ = βw[B/(B+κ)] + βhI 

where the transmission coefficients (“contact” rate) of water-borne and “human-to-human” transmission are represented as 

βw and βh respectively. The “human-to-human” transmission component in the force of infection equation is proportional to 

the number of infected individuals (at a particular time, t). It varies with incidence. 

Behind the equation is the ‘random mixing’ assumption, which is similar to the mass action principle in chemistry. As 

susceptible people are infected at a rate of λS, the “human-to-human” transmission term βhIS implies that in a homogeneous 

population, infected and susceptible populations are randomly mixed, and the per capita rate of transmission is βh. 

 

CHOICE OF PARAMETERS 

Here I discussed the choice of the parameters related to hyperinfectivity in the context of the original experiments from which 

the parameters were drawn. 

Hartley et al. [9] used a scaling factor of 700 for hyperinfectivity, i.e. the infectious dose of 50% chance of infection (IC50) of 

hyperinfectious V. cholerae is 700 times of that for normal V. cholerae. They cited the original experimental work of Merrell et al. 

[46]. However, Merrell et al.’s paper notes, “As shown in Fig. 1a [of their paper], V. cholerae shed from the human 

gastrointestinal tract (human-shed) showed greatly enhanced infectivity, out-competing the in vitro-grown strain by as much 

as 700-fold” (bold underlined emphasis mine). In other words, the maximum is 700-fold. By visual inspection of Figure 1a of 

Merrell et al., the geometric means for experiment 1, 2 and 3, were ~10, 10-20, ~200, respectively. It may not be prudent to 

fix the scaling factor to the maximum value of 700.  A sensitivity analysis on this scaling factor should be performed and its 

results presented, but this was not found in Hartley et al. [9].  
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The scaling factor of 50 in Andrews and Basu’s [8] and that of 100 in Chao et al. [27] for hyperinfectivity are more in line with 

both ref. [46] and [47]. In Alam et al.’s [47] mouse-passage model of hyperinfectious V. cholerae, the IC50 for mouse-passaged 

bacteria and that for bacteria grown in vitro are around 50 and 1000 colony-forming units (c.f.u.) respectively (in this case, 

percentage of mice infected after 24 hours, see Figure 3 of ref. [47]). And the competitive index from competition assays 

infant mice (as in Figures 1 and 2 of ref. [47]), hyperinfectious bacteria are either slightly higher or lower than 100-fold more 

infectious than non-hyperinfectious bacteria. Therefore, Andrews and Basu used a more conservative value that are more in 

line with experimental results than that of Hartley et al. [9]. 

With regard to the duration of hyperinfectious state, Merrell et al. [46] presented experimental results that after 5 hours in the 

environment, bacteria freshly shed by humans did exist in their hyperinfectious state but not after 18 hours. Alam et al. 

showed that mouse-passaged bacteria showed no difference in colonization of mice’s small intestines, compared with those 

grown in vitro, 24 hours post-inoculation. However, they showed that 5 hours after inoculation, mouse-passaged bacteria 

showed more rapid replication than those grown in vitro. Therefore, one could say that Andrews and Basu [8] used the 

longest possible duration supported by experiment (24 hours), while Hartley et al. [9] used the more conservative value of 5 

hours. 

SPATIAL ELEMENTS: HUMAN MOVEMENT & RIVER NETWORK 

In all the models introduced in the above sections, the element of time is paramount, as all variables vary with time. However, 

there are no spatial elements in these models. In this section, I shall briefly discuss some examples of models that handle these 

issues. 

Human movement is important in cholera transmission, as infected individuals shed bacteria into the environment through 

which they travel. One way to incorporate this element is to include in the force of infection term of region i, different 

transmission terms that represent transmission from region j to i. Such terms can be a function of the population sizes of the 

regions and their distance between them. An example is a paper by Tuite et al. [21] in which the 10 departments of Haiti were 

modeled explicitly. A similar approach was adopted by Bertuzzo et al. [11] but with a greater geographical resolution (>500 

local communities, at the fourth administrative level in Haiti).  

River networks contribute to cholera transmission. As illustrated in the first week of the cholera outbreak in Haiti in October 

2010, an outbreak that began in the upper Arbonite River spread along the river downstream to the towns at the estuary.  

Recently, modelers combine both elements of human movement and river networks into a single model and expanded our 

understanding of spatial elements in cholera epidemics.  

An example is an agent-based model by Chao et al. [27] (Figure S2), where they group individuals into households, and 

households into communities (of roughly 500 people each). They explicitly model daily commuting for workers between 

communities in Haiti. Two modes of long-distance travel were included, namely highway travel and non-highway travel. They 

also explicitly modeled cholera transmission via network by making the rivers as a second environment reservoir. Infectious 

individuals in one community shed bacteria into their own community local water source as well as to the river where the 

bacteria were transported downstream (with some loss) to another community.  
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FIGURE S2 A CARTOON OF CHOLERA TRANSMISSION VIA RIVER FLOW (ADAPTING THE IDEA FROM 

CHAO ET AL., 2011[27]) S: SUSCEPTIBLE; I: INFECTED; R: RECOVERED; B: BACTERIA IN LOCAL WATER 

SOURCE; BR: BACTERIA IN RIVER 

 

Rinaldo and his research group have produced a stream of recent articles that tackle river network. Based on Bertuzzo et al. 

[11], Rinaldo et al. combined human movement, river flow and seasonal rainfall data of Haiti into their model and fit their 

model to Haiti epidemic data and made prediction of the incidence curve up to January 2014 [19]. Mari et al. studied the 

interaction between human mobility with waterways and sanitation coverage in KwaZulu-Natal, South Africa [48].  

CLIMATE & SEASONALITY 

Seasonality is known to play a role in cholera incidence pattern. Climatic factors, like rainfall patterns and El Nino-Southern 

Oscillation [49, 50], are known as drivers of cholera seasonal patterns.  

Pascual et al. [51] proposed an ODE model to study how rainfall (and water volume in the rivers) affects cholera dynamics. 

They replaced the equation for bacterial concentration in water (as in the basic model by Codeço [2]) with 2 equations: one for 

water volume and the other for “fomites” or bacterial abundance. The equations were written so that when water volumes are 

low, the force of infection will be higher than when they are high. The bacterial concentration can be changed directly by 

climatic factors without affecting its growth rate [51]. Seasonal rainfall patterns have been observed to correlate with the 

timing of cholera outbreaks in endemic areas. This component was added by Rinaldo et al. to their model [19]. Reiner et al. 

used a multidimensional inhomogeneous Markov chain model to study both the climatic effect and spatial element [52]. 

Tien et al. used sinusoidal forcing in the “contact rate” between susceptible population and contaminated water to model 

seasonality in cholera transmission as observed in 19th century London [20].  

Temporary immunity after infection as a factor has also been proposed. A semi-parametric method to fit a model of two 

difference equations (Susceptible and Infected individuals) to historic incidence data taking into account temporary immunity 

and seasonality have been developed by Koelle and colleagues [53, 54].   

BR 

I R S 

B 

BR BR BR 

S I R 

BR 

B Community i Community j 
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CHOLERA MODELING APPLIED IN AN OUTBREAK SCENARIO: 

ABRAMS ET AL. AS AN EXAMPLE 

To illustrate the considerations when one constructs a model for a specific purpose, we use the model written by Joseph 

Abrams and colleagues [13] as an example. Among all published models on the Haitian cholera outbreak, Abrams et al.’s 

model may have the highest policy relevance, as modeling outputs were conveyed directly to policy-makers and non-

governmental organizations in real time during the outbreak. We approach this by looking at some of the features of the 

model structure, presenting the reason for their inclusion or exclusion by Abrams et al., and comments on their choice in 

Table S8. Figure S3 provides an illustration of the model structure. 

TABLE S8 SELECTED COMPONENTS INCLUDED OR EXCLUDED IN THE CDC MODEL BY ABRAMS ET AL.[13]

  

Components Incorporated 

(Yes/No) 

Reason given by Abrams and 

colleagues 

Comments 

Only a fraction of the Total population being 

Susceptible 

Yes “Not all people are expected to be 

uniformly exposed to the cholera 

epidemic; people who have access to 

clean water and safe sanitation, or are 

geographically isolated from the 

outbreak may be effectively protected 

from infection”. [13] 

What the model does is to stratify 

the population into 2 groups, one 

can be exposed and one cannot. 

Susceptible people are being moved 

from the latter to the former at a 

rate. This necessitates an additional 

parameter that depends on model 

fit. No data other than the 

incidence data are used to support 

the value of the parameter. 

 

Two “Removed” compartments – R1 and R2 Yes Population recovered from cholera 

would remain “fully immune for 6 

months before slowly losing immunity at 

the same rate as measured in a large-scale 

vaccine study” [13] 

This is a strategy to alleviate the 

problem of having an exponential 

declining flow of people losing 

their immunity. (The equation 

represented by the arrow will imply 

exponential “decay”) 

 

Seasonal changes No “There is no recent experience with 

cholera in the Caribbean” [13] 

To keep the model simple, 

seasonality (especially rainfall 

pattern) is left out. Therefore it will 

not be possible to model the 

summer 2011 and summer 2012 

peaks of cholera incidence. 

 

Spatial component (department-specific); e.g. 

geographical connected ness: infected people 

in a neighbouring department can contaminate 

water in a department; separate “water 

initiation parameter” for departments affected 

later in the epidemic 

 

Yes Used an early fit values, without 

providing reason why they include this 

component. 

No data support their values apart 

from fitting to the incidence data. 

Different “kappa” for different departments: 

population/ln(density) 

Yes “Early model testing showed that rates 

of disease spread within departments 

were positively associated with 

population density, and scaling water 

infectivity by log population density 

[ln(densi)] was shown to improve model 

fit.” 

Abrams et al. have access to Haitian 

data, broken down for Port-au-

Prince and the 10 departments. 

Therefore they can fit the model to 

the data by 11 geographical units. 

 

As illustrated in Figure S3, in each department (Haiti’s political division), there are 5 population compartments (black boxes) 

and a compartment for bacterial concentration in drinking water sources (blue oval). Different from the models that were 
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previously introduced in this paper, Abrams et al. created a “Total population” compartment so that they could adjust the 

fraction of population that was at risk of infection along the time line as cholera spreads from one department to another 

(spatial element). They also incorporated two Removed compartments to incorporate a delay in waning immunity. Abrams et 

al.’s model incorporated the spatial heterogeneity of the outbreak by incorporating the bacterial shedding of infectious 

population into other compartments (population movement) and the transfer of bacteria from one compartment to another 

(hydraulic movement).  

Abrams et al.’s model was a difference equation model – instead of differential equations. It was written in R, an open-source 

free software, that is readily available. 

As Abrams et al. explained [13], there is collinearity between certain parameters. Therefore they fixed some of them at values 

that were fitted from early iterations of the model. However, their paper avoided answering an important question: why 

certain variables (“compartments”) or parameters are needed at the first place. While introducing new structures to the model 

may increase the fit to the data, the inclusion of parameters that are not supported by empirical data (apart from fitting to the 

incidence data) may create unnecessary uncertainty for the model. The fact that there is much collinearity between parameters 

suggests the possibility of redundancy in the model. 

By deploying their model, Abrams et al. provided timely estimates to policy-makers and other stakeholders. In this sense, they 

did a successful job despite all the caveats of their model. 

FIGURE S3 THE ABRAMS ET AL.’S MODEL (ADAPTED FROM REF.[13]). NOTE: A DEPARTMENT IN HAITI 

REFERS TO AN ADMINISTRATIVE AREA SIMILAR TO A PROVINCE IN OTHER COUNTRIES. 
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